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Fluid motion inside a spinning nutating cylinder 
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The incompressible three-dimensional Naviel-Stokes equations are solved numeri- 
cally for a fluid-filled cylindrical cannister that is spinning and nutating. The motion 
of the cannister is characteristic of that experienced by spin-stabilized artillery 
projectiles. Equations for the internal fluid motion are derived in a non-inertial 
aeroballistic coordinate system. Steady-state numerical solutions are obtained by an 
iterative finite-difference procedure. Flow fields and liquid induced moments have 
been calculated for viscosities in the range of 0.9 x 104-1 x lo@ cSt. The nature of the 
three-dimensional fluid motion inside the cylinder is discussed, and the moments 
generated by the fluid are explained. The calculated moments generally agree with 
experimental measurements. 

1. Introduction 
Flight instabilities of artillery projectiles due to certain liquid fills have been 

documented in recent years by D’Amico (1978), Miller (1982), and others. D’Amico 
& Miller (1979) flight-tested shells with similar liquid payloads ranging in viscosity 
from lo3 to 1.7 x lo6 cSt. Miller (1982) measured the liquid-induced despin moment 
with a laboratory fixture capable of both spinning and nutating a cylindrical canister 
filled with homogenous liquids ranging in viscosity from 1 cSt to 2 x lo6 cSt. The 
existence of a large despin moment and nutational instability produced by the viscous 
liquids was clearly demonstrated by the laboratory and flight tests. The immediate 
problem was solved (Miller 1979; D’Amico 1981) by packing the payload section with 
circular felt wedges which were impregnated with the liquid payload (phosphorus). 
These wedges had the effect of severely restricting the motion of the fluid. However, 
the cause of the problem remained obscure, because the internal fluid motion is 
extremely difficult to experimentally measure and to analyse. An early attempt by 
Vaughn (1978) to derive the parametric dependence of the moments involved 
excessive physical assumptions and provided little physical insight. Murphy ( 1982) 
obtained a theoretical solution for the pitch and yaw moment with an improved 
version of the Stewartson (1958)-Wedemeyer (1966) theory at the lower viscosities. 
Recent work by Murphy (1983) derives a relation between the liquid-induced roll 
moment and the side moment. Unfortunately, the Stewartson approach does not seem 
to produce the required roll torque, and both efforts seem to be limited to the 
lower-viscosity range. 

Since none of the previous references provide an understanding of the motion of 
the fluid in the high-viscosity range, where the destabilizing moments are the largest, 
it  was decided to solve the Navier-Stokes equations numerically for a spinning 
nutating fluid-filled cylinder. Equations for the internal fluid motion were derived 
in a non-inertial aeroballistic coordinate system. The three-dimensional internal flow 
field was solved for a viscosity range of 0.9 x 104-1 x lo@ cSt using an iterative 
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finite-difference method. The results show that the flow is fully three-dimensional, 
as might be expected, and dominated by viscous effects. The calculated moments 
generally agree with experimental roll and yaw moments. 

2. Derivation of equations 
2.1. Non-inertial coordinate system 

A numerical solution to the fluid motion inside a spinning and nutating cylinder 
requires that careful consideration be given to the choice of the coordinate system. 
The two primary candidates are the body-fixed and the aeroballistic coordinate 
systems. In  the body-fixed coordinate system the axes are attached to the cylinder, 
and therefore spin and nutate with the cylinder. In the present aeroballistic system 
the axes nutate with the cylinder, but they do not spin. 

The criterion for the selection of the appropriate coordinate system must be the 
nature of the boundary conditions and solution in each system. Experiments by Miller 
(1981) have revealed some fundamental features of the flow field. Miller has taken 
high-speed motion pictures of a partially filled circular cylinder that is spinning and 
nutating at constant rates. For the artillery-shell case, when the spin frequency is 
much greater than the nutational frequency, the photographs show a void near the 
axis of the cylinder. For high-viscosity fluids, the shape of the void is a cylinder with 
a slightly S-curved axis, which appears to be constant in shape and orientation with 
respect to the nutation axis. For low-viscosity fluids the cylindrical void becomes 
more distorted, and small-scale disturbances are seen on the air/fluid interface. These 
experiments support the view that for high-viscosity fluids the flow field is steady, 
i.e. non-time-varying, in the aeroballistic reference frame. The flow field in the 
body-fixed system would therefore be time-varying and periodic, with a period of 
2x/w,, where w, is the spin rate measured in the aeroballistic reference frame. A 
considerably greater numerical effort would be required to obtain the solution in the 
body-fixed system. Consequently, in the present analysis the equations of motion are 
derived in an aeroballistic reference frame. 

In their traditional development (Schlichting 1968) the Navier-Stokes equations 
are derived in an inertial coordinate system. The aeroballistic coordinate system is, 
by virtue of its nutation, a non-inertial coordinate system. The Navier-Stokes 
equations must therefore be rederived taking into account the appropriate acceleration 
terms for the nutating axes. 

2.2. Fluid-$ow equations 
The Navier-Stokes equations are to be derived in a non-inertial, non-spinning, 
nutating, aeroballistic axis system (figure 1). It should be noted that standard 
aeroballistic axes in flight dynamics do not spin or nutate. The present aeroballistic 
axes have a rotation rate, relative to inertial space, equal to the nutation rate. The 
incompressible NavierStokes equations for an inertial frame of reference can be 
written as 

where V = the absolute velocity of a fluid particle, F = the body force, e.g. gravity, 
p = fluid density, p = static pressure and v = kinematic viscosity. 

To be applied in a non-inertial reference frame, both the acceleration vector 
appearing in the left-hand side of (1) and the velocity vector appearing in the viscosity 
term must be expanded to account for the rotation of the axes. 
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FIQURE 1. Axis system. 

The velocity vector V may be written as 

v =  V + S d x R + V , ,  

x = r cosd 
y = r sin4 

where V = velocity relative to the aeroballistic axis system, D = rotation vector of 
the axes, R E position vector relative to the aeroballistic system, and V, = linear 
velocity of the coordinate system. By performing the vector operations, it  can be 
shown that 

V*(D x R )  = 0. (3) 

v, = 0. (4) 

Also, for this application it is assumed that 

The right-hand side of ( 1 )  is therefore unaffected by the axes’ rotation. 

(Meriam 1975; Raudkivi & Callander 1975) 
Any absolute acceleration may be written in a non-inertial reference frame as 

A = A C + A ’ + 2 0 x  V + # ~ X ( O X R ) + S ~ X R  (5 )  

where A, = linear acceleration of coordinate system and A’ = D V / D t  = fluid 
acceleration relative to the aeroballistic axes. For the case considered here it is 
assumed that 

and that the axes are rotating at a constant speed, 

A , = O  (6) 

n = 0. 

Substituting (2)-(7) into (1) gives 

D V  F 1  
- + 2 a x  V + S d x ( n x R ) = - - - v p + V V 2 V )  
Dt P P  

( 7 )  

5 F L P  150 
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Since 
DV a v '  
-- - -+( V - V )  v', 
Dt at (9) 

(8) may be written as 

( 10) 
a v  F 1  
- = - ( V - V )  V - 2 9  x V -5) x (5) x R )  + - - - V p +  vV2 v'. 

at P P  

Equation (10) is the vector form of the Navier-Stokes equations in an aeroballistic 
axis system for a liquid-filled cylinder undergoing steady nutation and no linear 
acceleration. 

I n  order for (10) to be solved numerically, i t  must be resolved into its scalar 
components. The individual vectors in cylindrical coordinates are 

v' = v;s,+v~a6+v;8,, (11 )  

R = r2, + z2,, 
52 = w, cos$ 2,--w, sin$ 2,+w,C,, 

(12) 

(13) 

where w, = -wN sin0, 0, = wN cos0, 

wN = nutation rate, 0 = nutation angle, 

and F = F,:, + F6 2, + F,C,. (14) 

Substituting (1  1 )-( 14) into each of the components of (10) and performing the vector 
operations yields the following terms : 

convective acceleration 

Coriolis acceleration 

252 x V = - (2v; w, sin $ + 2vi w,) 2, 

+ (2v; wz - 2v; w, cos $) &$ + (2vi w, cos $ + 2v; w, sin $) 2,; (16) 

centrifugal acceleration 

a x ( 5 2 x R ' )  = ( - r r o ~ s i n 2 $ - r w ~ + w , w , c o s $ ) - 2 ,  

+( -zw,w,  sinq5-rwi sin$ cos$)2$+(rwxwz c o s $ - z w ~ ) 2 , ;  (17)  

the body force due to gravity was found to be insignificant for the angular 
accelerations investigated and was ignored ; 

pressure force 
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viscous force 

All of these terms can be collected to form the three scalar Navier-Stokes equations. 

v.v=o.  
The remaining fluid-flow equation is the continuity equation 

Substituting (2) and performing the vector operations yields 

The axis rotation has no effect on the continuity equation. 

2.3. Boundary conditions 

The imposed boundary conditions are that the fluid adheres to the wall and that there 
is no flow through the wall. Therefore the conditions to be met at the cylinder and 

(21 ) 
endwalls are 

v; = 0, v; = rw,, v; = 0, 

where w, is the spin rate relative to the aeroballistic axes. The boundary condition 
on v; occurs because the cylinder is spinning relative to the coordinate axes. 

For highly viscous fluids the fluid motion will be dominated by the solid body 
rotation of the fluid, i.e. v; x rw,. In order to more easily understand the deviation 
of the fluid motion from solid-body rotation, it is convenient to eliminate the solid-body 
rotation of the flow field. This may be accomplished by making the velocity reference 
transformation 

vi = v6 + rw,, 

Substituting these definitions into the scalar form of the Navier-Stokes equations and 

(22) v; = vr,  v; = v,. 

- 

letting 
wp = w,+w, 

one has 

+ 2v, w, cos q5 + zw, w, sin # + rwi sin q5 cos @ 

5-2 
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- 2v, w, sin q5 - 2rw, 0, cos $ - rw, w, cos q5 + 

The continuity equation becomes 

The boundary conditions at the surface are now 

v, = V$ = v, = 0. (27) 

While these boundary conditions are identical with those for equations written in 
a body-fixed coordinate system, it must be understood that (23)-(26) are still written 
in an mroballistic system. The transformation of the velocity reference has done 
nothing to change the character of these equations and their solution. 

3. Computational technique 
3.1. Finite-difference method 

The three-dimensional equations of motion developed in $2 are solved for a 
steady-state solution by an iterative finite-difference procedure. The iterative method 
chosen to solve these primitive variable equations is Chorin's (1967a, b,  1968) method 
of artificial compressibility. This method has advantages over the other available 
methods (e.g. vector potential and particle-in-cell) for solving incompressible problems, 
in that it directly satisfies the continuity equation and the physical boundary 
conditions. The present work appears to be one of the few applications of this method 
to a three-dimensional problem, and, to our knowledge, the first application to a 
non-inertial problem. 

Chorin's method is based on introducing an auxiliary continuity equation 

and an artificial equation of state 
P = P / S  (29) 

where 6 is a constant to be determined. 
Using the artificial equation of state, Chorin has cast the auxiliary continuity and 

the momentum equations in terms of either p or p. In this work we have chosen to 
use p so that the momentum equations remain unchanged, and the auxiliary 
continuity equation becomes 

In this equation t serves as an iterative variable, which is analogous to time in a 
time-varying compressible-flow problem. S serves as a relaxation parameter in the 
iterative procedure. As the solution converges, a p p t  -+ 0, and the incompressible 
continuity equation is approached. In the limit, applat = 0, and the constant factor 
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j = 2 4  
l p = O  

FIGURE 2. Grid system. 

Y 

1 plane 

6 disappears. In a numerical method, convergence is stated as AplAt < E ,  where E is 
an arbitrary convergence criterion. Therefore it is seen that 6 is absorbed by the 
convergence criterion E and does not affect the converged solution. 

The finite-difference grid system used in the present method is shown schematically 
in figure 2. Indices i , j  and k refer to the radial, circumferential and axial coordinates 
respectively, such that 

(31) I T = R -  ( i -  1)  AT ( i  = 1,2,  . . . , N ) ,  

# = j A #  (j= 1 , 2  )...) M ) ,  

z = +(k - 1) Azl (k = 1,2,  . . . , L)  

R is the radius of the cylinder and 1 is the length of the cylinder. In  the present 
calculations N ,  M and L were chosen to be 1 1  , 24 and 21 respectively, yielding 5544 
grids points. This grid density gave good resolution and moderate computational time 
on the Cray-1S computer. 

The finite-difference approximations applied to the Navier-Stokes equations 
(23)-(25) and to the auxiliary continuity equation (30) are forward-time centred-space 
differences. They are first-order accurate in time and second order in all spatial 
directions. The first-order accuracy of the time differences does not enter into the 
global accuracy of the solution because only steady-state solutions are of interest. 
As a result, the numerical approximations to the converged governing equations are 
second-order accurate. 
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3.2. Initial and boundary conditions 

The initial conditions of the fluid do not affect the converged solution of the flow field, 
but they are important in reducing the number of iterations required for convergence. 
The initial state chosen is solid-body rotation of the fluid. The initial conditions on 
the velocity components, shifted according to (22), are 

v, = V$ = v, = 0. (32) 

The initial conditions on the pressure field are obtained by setting all terms 
involving fluid velocity and all Coriolis terms to zero in the momentum equations. 
From (23)-(25) one obtains 

aP 
- ar = p( rwi+rwi  sin2Q-mXw, COSQ), (33) 

(35) -= p( - rw, w, cos Q + mi). 
az 

Integrating these results in an expression for pressure 

p = - rim, w, cos Q + +r2wi sin2 $ + +z2ui) + p, .  (36) 

The constant of integration p ,  is the initial static pressure in the non-spinning 
container. In this work this value was arbitrarily set to zero. 

The finite-difference form of the boundary conditions on velocity are identical with 
those (27) given for the continuum. 

The boundary conditions on pressure are implemented directly through the 
auxiliary continuity equation (30). 

The pressure boundary condition on the cylinder wall is 

and on the ends of the cylinder 

Forward time differences and second-order one-sided spatial differences were used 
for (37) and (38). Second-order accurate boundary conditions on pressure improved 
the accuracy of the results compared with first-order accurate boundary conditions 
used earlier by Vaughn, Oberkampf & Wolfe (1983). 

A special approach is required at  the centre of the cylinder because the terms 
involving l / r  in the momentum and continuity equations become indeterminate. 
Several methods of handling the centre indeterminacy were tried, including the 
substitution of rectangular coordinates at the centre. Local rectangular coordinates 
eliminated the indeterminacy, but did not noticeably change the results compared 
with the following procedure. First, the calculations are started at the outside of the 
cylinder (i = I )  and proceed inward to i = N -  1, were N is at  the centre (N = 11) .  
The pressures and velocities v,. and v, are computed at the centre using a second-order 
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difference equation along the ray across the centre from the previously computed 
points. The equations are 

(39) 

(40) 

(41 1 
!jM corresponds to a ray displaced by 180". The velocities and pressure calculated at 
the centre for each circumferential ray are then averaged to obtain a final single value 
at  the centre for a given iteration step. The circumferential velocity vui must be equal 
to the radial velocity at the centre on a ray displaced by 90". 

Details on the numerical procedure and iterative convergence characteristics can 
be found in Vaughn et al. (1983). 

- 
'TN,  j, k - ' f " - 1 ,  j, k-&('TN-2, j, k+'TN-l,5+4M, k ) '  

'ZN,  j ,  k - 'ZN-I, j, k-:('ZN-2, j, k-'ZN-l, j a M ,  k) '  
- 

1 
P N ,  j, k = P N - 1 ,  j ,  k- 3 ( P N - 2 . j ,  k - P N - I .  j + i M ,  k ) .  

4. Discussion of results 
4.1. Nature of fluid motion 

One of the most interesting and useful results of a numerical calculation is the 
determination of the details of the flow. An enormous quantity of velocity-vector data 
is produced by a single converged solution ; however, only a few velocity-vector plots 
will be presented which demonstrate the basic motion of the fluid. The fluid-velocity 
vectors shown in the figures are in the aeroballistic reference frame, and the solid-body 
rotation component has been eliminated, i.e. the velocity vectors shown are only the 
deviations from solid-body rotation. Figure 3 shows a side view of the cylinder 
perpendicular to a plane containing both the spin axis and the nutation axis. Figure 
4 shows a side view of the cylinder parallel to a plane containing the spin and nutation 
axes. The view in figure 4 is perpendicular to the cylinder axis such that the z-axis 
is in the foreground and the Z-axis is in the background. This calculation was made 
for the conditions of 0 = 20", w, = 3000 r.p.m., wN = 500 r.p.m., ' v  = 9500 cSt, a 
cylinder radius of 2.375 in., and a length of 20.85 in. The motion at higher viscosities 
is similar, except that the velocities are not as large. Notice that there is a pronounced 
vortex in each end of the cylinder and a much weaker central vortex. There is also 
a separate outer vortex motion near the walls that rotates in the same direction as 
the two end vortices. This general behaviour is shown schematically in figure 5 .  The 
reader is reminded that these velocity vectors are the deviations from solid-body 
rotation. A single fluid particle actually moves back and forth axially in an oscillatory 
motion as the particle moves circumferentially at a speed near the spin rate. 
Consequently, the motion only appears to be a vortex in a velocity-reference-shifted 
aeroballistic system. 

Figure 6 shows velocity-vector plots near the top (k = 19) and bottom (k = 3) ends 
of the cylinder, and it can be seen that the two flow patterns are similar but reversed 
in direction. The largest velocities in the fluid (in the velocity-shifted frame) occur 
near the endwalls. It is here that the axial vortex motion is reversed from opposite 
sides of the cylinder and turned parallel to the endwalls. 

Figure 7 is a polar vector plot at the centre axial station (k = 11). This clearly shows 
that there is a slow rotation of the fluid about the spin axis, relative to the aeroballistic 
axis, in a direction opposite to the spin direction. This produces a viscous shear and 
a roll torque opposite to the counterclockwise spin direction. 

Figure 8 is a map of the cylinder wall as viewed from the inside, showing the 
circumferential component of wall shear-stress vectors. These circumferential wall 
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- 10.00 ft/s 

FIGURE 3. Fluid velocity-vector plot (side view perpendicular to (2, 2)-plane). 

20.00 ft/s 

FIGURE 4. Fluid velocity-vector plot (side view through plane of nutation angle). 
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FIGURE 5. Schematic of the fluid flow. 

shear-stress vectors are proportional to the velocity component v4 adjacent to the 
wall. When viewed in this manner, the cylinder wall would be moving upward as a 
result of spin. It can be seen that circumferential velocity components are predomi- 
nantly downward in the opposite direction, resulting in the shear forces on the wall 
that produce the despin torque. The despin moment can only be produced by the 
viscous shear forces because a force generated by pressure cannot have a tangential 
component. Note that only one-half the grid points are shown in the circumferential 
direction in the interest of clarity. 

The plane of maximal axial and transverse velocity is canted with respect to the 
plane of the nutation angle by roughly 45O, which results in producing both a pitch 
and yaw moment. The pitch and yaw moments are produced by both viscous shear 
forces and pressure forces. As an example of the relative contribution of each of the 
components to the total liquid induced pitch and yaw moment, consider the following 
case: v = 80000 cSt, w, = 3000 r.p.m., wN = 500 r.p.m., 0 = 2O0, cylinder radius of 
2.180 in., and length of 19.617 in. The integrated values of the moments for this case 
are as follows. 

Pitch moment: 
viscous component = - 22.9 f t  lb ( - 20.1 on cylinder, - 2.8 on ends) ; 
pressure component = +64.5 ft lb (72.4 on cylinder, -7.9 on ends); 
net liquid moment = +41.6 ft lb. 
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e = 200 
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j = 24 

FIGIJRE 6. Fluid-velocity vector plot (cross-section near ends). 

Yaw moment: 
viscous component = + 12.69 ft  lb ( + 11.70 on cylinder, +0.99 on ends); 
pressure component = - 17.01 f t  lb ( -  18.55 on cylinder, + 1.54 on ends); 
net liquid moment = -4.32 ft  lb. 

It can be seen that while the pressure component is larger for each moment, the 
viscous component is significant. For each component in both pitch and yaw the liquid 
moment on the sides of the cylinder dominates that produced on the ends of the 
cylinder. For the liquid-induced yaw moment it is seen that the net yaw moment is 
a near balance between countervailing forces of viscosity and pressure. A simple 
calculation shows that if the liquid acted as a solid body the pitch moment would 
be 30.5 ft  lb and the yaw moment would be zero. This indicates that, for the case 
given here, the effect of the fluid fill is destabilizing in both pitch and yaw. 

The numerical results show very clearly that the motion of a fluid particle is 
predominantly oscillatory in nature, and is combined with a slow circumferential drift 
relative to the cylinder wall. The frequency of oscillation of a fluid particle is near 
the spin rate, and the amplitude of the motion is very small. This may explain why 
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1 .OO ft/s - .  
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FIQIJRE 7. Fluid-velocity vector plot (cross-section at centre of cylinder). 

v = 9,520 cSt 
w, = 3,000 r.p.m. 
wN = 500 r.p.m. 
e = 200 

FIQURE 8. Circumferential wall shear-stress vectors. 
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FIGURE 10. Comparison of calculated and experimental roll moment at various spin rates 
(experiment, Miller 1982). 

large cell baffles have been ineffective and why small-cell porous fillers, such as felt, 
have been effective in reducing the liquid-induced moments. 

I n  experimenting with the numerical code i t  was found that Coriolis accelerations 
appearing in the momentum equations are primarily responsible for driving the fluid 
motion, although the terms 

av % av, 
WS$ ""f w s q  

appearing in the three momentum equations do have a significant effect. These are 
the convective acceleration terms due t o  the cylinder spin rate w,. 

FIGURE 9. Comparison of calculated and experimental roll moment at various viscosities 
(experiment, Miller 1982). 
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FIQURE 11.  Comparison of calculated and experimental roll moment for various nutation angles 
and rates (experiment, Miller 1882). 

4.2. Roll moment 
Roll moment has been calculated for a cylinder with a radius of 2.375 in. and a length 
of 20.75 in. In attempting to compare fluid-induced moments with experimental data 
it became apparent that a consistent bias existed in the comparisons. Recent 
experimental measurements by Miller (1983 personal communication) have deter- 
mined that the temperature of the fluid in the cylinder rises not only after repeated 
test runs, but also during a run. The temperature data indicated that the temperature 
increased by about 4.5 O F  per run for silicon oil and roughly stabilized after repeated 
running at an increase of 18 OF. Coneequently, the true temperature must be higher 
than the initial temperature and the true viscosity must be lower than the viscosity 
quoted for the experimental runs. Faced with this dilemma, we have tried to make 
a viscosity correction for each type of data run. 

The first comparison (figure 9) shows computed and experimental data for despin 
moment versus viscosity. In  this case, each experimental data point resulted from 
a single run, where the initial temperature was adjusted before each run to obtain 
the correct initial viscosity. Consequently, according to the subsequent temperature 
data, one would expect a temperature increase of roughly 4.5 O F  for each point. The 
experimental data points have been shown both uncorrected (0)  and corrected (0 )  
for a 4.5 O F  temperature increase. It can be seen that the calculated values are in 
fair agreement with the corrected data. 

In  the comparison of the experimental data for despin moment at various spin 
rates, calculations were made for two viscosities (figure lo), v = 100000 cSt and 
75000 cSt, the latter corresponding to an 18 O F  temperature increase. In  this case, 
the data were taken in a more continuous process so that a temperature increase near 
the experimentally observed maximum should be expected. Again, the experimental 
data are predicted reasonably well by the numerical solution. 

In  figure 11 the calculated despin moment is shown as a function of nutation angle 
and rate. In this case, we have chosen to make the calculations at a viscosity of 
57200 cSt, which is equivalent to an 18 O F  correction from the initial viscosity of 
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FIGURE 13. Comparison of experimental and calculated yaw moment for various viscosities 

(experiment, Miller 1983, personal communication). 

200000 cSt and is the maximum steady-state temperature increase observed in the 
recent temperature increase tests. It should be observed that the calculated roll 
moment does not change radically over this viscosity range, as can be seen in figure 
9. Again, the numerical procedure predicts the experimental data reasonably well. 

4.3. Pitch moment 
Pitch and yaw moments have been calculated for a cylinder with a radius of 2.180 in. 
and a length of 19.617 in. The calculated pitch moment as a function of viscosity is 
shown in figure 12 for silicone oil. Comparison is made with the rigid-body pitch 
moment because there are no existing laboratory experimental measurements for 
comparison. It can be seen that as the viscosity increases, the pitch moment 

FIGURE 12. Calculated pitch moment vs. viscosity. 
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approaches that of the rigid body. This is the proper trend, because a rigid body is 
equivalent to a fluid body with infinite viscosity. It should be noticed that the effect 
of the fluid is to slightly decrease the projectile stability in pitch, i.e. the fluid motion 
causes a larger positive (destabilizing) moment than that of an equivalent rigid body. 

4.4. Yaw moment 
The calculated values of yaw moment as a function of viscosity for silicone oil are 
shown in figure 13. It can be seen that the variation of the yaw moment is similar 
to the calculated roll moment as seen in figure 9. The prediction is in excellent 
agreement with the experimental measurement at 80000 cSt. The single experimental 
measurement (Miller 1983 personal communication) was recently obtained by a newly 
developed experimental technique. As discussed earlier, the liquid-induced yaw 
moment is a near balance of the positive moment produced by the wall shear stress 
and the negative moment produced by the normal stress. The net liquid-induced yaw 
moment (negative) acts in the direction to increase the nutation rate which is 
destabilizing in the flight of a projectile and would result in a growth of the nutation 
angle. This has been observed in free flight of liquid filled projectiles (D’Amico 1978; 
D’Amico & Miller 1979; Miller 1982). 

5. Concluding remarks 
The three-dimensional incompressible Navier-Stokes equations are solved numeri- 

cally for a fluid-filled cylindrical canister that is spinning and nutating. The results 
show that the motion of the fluid is steady relative to the aeroballistic axis system. 
This means, consequently, that the flow field is time-varying, i.e. periodic, in a 
body-fixed system. There is no evidence of pressure waves or resonance phenomena 
for the range of viscosities examined, 0.9 x 104-1 .O x lo9 cSt. The internal fluid motion 
appears to be driven primarily by the Coriolis-acceleration terms in the momentum 
equations. The general motion of fluid particles is a nearly circular orbit whose plane 
is tilted to the cylinder spin axis. There is a slow continuous circumferential drift of 
the fluid particles opposite to the direction of the spin rate. This accounts for the 
despin moment through viscous shear interaction with the cylinder wall. 

The results of the numerical calculations agree reasonably well with existing 
experimental results, provided that corrections are made for the reduction in 
viscosity that results from heating during the experimental test. The roll and yaw 
moments reach a maximum at a kinematic viscosity of approximately 80000 cSt. The 
roll moment results entirely from viscous shear forces, while the pitch and yaw 
moments result from both viscous shear and pressure forces. 

The despin moment is roughly proportional to the square of the nutation angle and 
the square of the nutation rate. It also is approximately proportional to the density 
of the fluid. There does not appear to be any simple dependency between the despin 
moment and the spin rate or viscosity. For a given coning angle and rate, the despin 
moment increases with spin rate until a threshhold value and then remains constant 
with spin rate. This result shows good agreement with experimental data. 

For the particular cases investigated, it was found that the liquid-induced pitch 
moment was slightly larger than the rigid-body value. For extremely high viscosities, 
e.g. lo0 cSt, the liquid pitch moment is nearly equal to the rigid-body value. The 
liquid-induced yaw moment varies with spin rate in a fashion very similar to the 
despin moment. The yaw-moment prediction is in excellent agreement with the only 
available experimental measurement. The yaw moment is a near balance of the 



138 H .  R. Vaughn, W .  L.  Oberkampf and W .  P. Wolfe 

positive moment produced by the wall shear stress and the negative moment 
produced by the normal stress. 

The present numerical solutions are limited to fluids with viscosities of 9OOO cSt 
and greater, a t  least for this cylindrical configuration and a t  the spin and nutation 
conditions used in the calculations. Other conditions may allow stable solutions to 
be obtained a t  lower viscosities. The present numerical method converges in about 
four minutes for the higher viscosity fluids on the CRAY-1S computer, and therefore 
provides a practical computational method. The reason for non-convergent solutions 
at viscosities below 9OOO cSt is not clear. It could be speculated that there is some 
shortcoming in the numerical method for low viscosities, or it could be that no steady 
state solution in the aeroballistic frame exists for low viscosities. 

This work was done at Sandia National Laboratories. It was supported by the U.S. 
Department of Energy under Contract DE-AC04-76DP00789 and by the Chemical 
Research and Development Center, United States Army Armament, Munitions, and 
Chemical Command, under Military Interdepartmental Purchase Request 331 1-1409. 
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